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We consider a controlled system described by a system of ordinary differential 
equations the right-hand sides of which contain arbitrary smooth functions of 
time. Conditions are formulated under which all possible motions of this system 
do not include a single Liapunov-stable motion belonging to a given bounded 
set in the space of its states. 

1. The motion of the controlled system is defined by the system of equations 

dz / dt = Q (t, z) + u (t), t E I = {t : t >, to) (1.1) 

2 = (51, . . .I 4, u = (~1, . . ., 4, Q(.) =‘& (.), . . .t Qn (.)) 

Here I, u and Q (.) are vectors in the real n-dimensional space R,” ; t, is the initial 
instant and t is time. The vector I = x (t) characterizes the state of the controlled 
system; u = u (t), t E I is the control, the mapping of which is o = {(t, ZL) : u = u (t), 
t E I}, o [to, t] is the contraction of ti onto [to, t] n I; z (t) = cp (t, t,, q,, o ito, t]), 
t E I describes the motion of the system (1.1) for the given o E G originating from 
the initial state z (to) = zo, and B is a certain admissible set {o). 

We shall formulate a problem related to the problem first formulated by Chetaev [l, 

23 and concerned with separating sets of stable and unstable motions out of a general 
continuous set of motions. 

Problem. Using the form of the system (1.1) which can be identified with the con- 
trolled system, we must find the conditions under which all possible motions of the sys- 

tem donot include a single stable motion belonging to the given set G in Rxn for all 
t E I. We denote 

div,Q (t, x) = i +QiW> IIxll= maxi 1 xi I 

i=l 

d (a, 2) = inf (11 a - b (1, b E Z}, S (Z, p) = {z E Rx”: d (2, Z) < PI 

Here Z is any set in R,” and ,? (2, p) is the closure of S (Z, p), where p is a positive 
number. 

Theorem 1. Let (a) G be a given bounded set in R,*; (b) u (t), t E Z be any 
continuously differentiable function of time ; (c) a positive number is0 exists such that 

the function Q (t, 5) and its partial derivatives in t and zr, . . ., cc, are all continu- 

ous in Z X S (C, eg) ; (d) a continuous function M (5) exists such that div,Q (t, z) >, 

kl (2) > 0 for all t E I and all z ES (C, e,). Then, no matter which control u (t), 
t E I is chosen from the class of continuously differentiable functions of time, no Lia- 

punov-stable motion of (1.1) exists belonging to the set G for all t E I. 
Proof. Suppose that contrary to the theorem there exists a control u* It), t E Z 

belonging to the class of continuously differentiable functions of time, and a correspond- 
ing Liapunov-stable motion ~0 (t)=q (t, to, ZO*, oj* [t,,tJ), t E I, zO* e G such that 
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z” (t) E G for all t E I (1.2) 

Consequently, in accordance with the Liapunov’s definition of a stable motion [3] there 

exists a positive number S -\< l/z E,, such that 

(1.3) 

for all t E I and all x0 E l’, = {x0 : 11 J,, - zo* jf < 6 6.: ljz eo). 
From (1.2) and (1.3) we see that the motions @ = {‘p (t, to, x0, O* [to, tJ), t E I, 

z. E V,} belong to the set S (C, I/* Eo) and are therefore bounded, by the condition (a) 
of the theorem. On the other hand, since S (G, 1/Zao) is a compactum, the condition (d) 
of the theorem implies that a positive number a exists such that 

div& (t, z) > M (z) > a > 0 (1.4) 

for all values of t E I and all .Z E s (C, 1/Zao) . But in this case from (1.3) and (1.4) 
it follows that l, 

I 
div, Q (r, cp (T, b, x0, co* [to, z]) dz + CO when t --_) 00 (1.5) 

to 
uniformly in z. E Vo, where V, is an open set in R,n. By Theorem 1 of [4] the relation 
(1.5) means that the motions CD = CT (t, to, x0, O* lto, tl), t E I and 20 E V,) are 
completely labile relative to the set l’, in the sense of [4] and this contradicts the fact 

that the motions Q are bounded, which was established above. 
Note 1. Let n = 2, V (6 z) EEA (s), u (1) f 0. In this particular case Theorem 1 

resembles the known Bendixon criterion [S] of the absence of the limit cycles from the 
given open region of the phase plane RX2 . However, unlike the Bendixon criterion, The- 

orem 1 formulates the sufficient conditions for the absence fo any Liapunov-stable mo- 
tions (not necessarily periodic) in the given bounded (not necessarily open) set G in H,? 

provided that the divergence of A (xl is sign positive in S (C;, eo) (i.e. has a property 

stronger than that of the constancy of sign on which the Bendixon criterion [5] depends). 

2. If Q (t, x) f A (z) and u (t) = 0, then the system (1.1) assumes the form 

dx / dt = A (x). ttl (2.1) 

Theorem 2. Let: (a) G be a bounded set in RX”; (b) a positive number a0 ex- 
ists such that A (2) is a function continuously differentiable in zi, . . ., 5, in s (G, eO); 
(c) a scalar function Y (x) exists which is continuously differentiable in x,, . . ., z, in 

s’ (C;, go) and such that v (2) + 0 and div, [Y (2) A (z)] > u for all z E s’ (G, eo). Then 

no Liapunov-stable motion of (1.1) exists belonging to the set G for all t E 1. 
Proof. By assuming that the opposite is true we can establish , as in the proof of 

Theorem 1, that an open set V. of the initial states of the system (2.1) exists such that 
the motions of this system @ = $cp (t, to, zo), t E I, to E Vo} belong to the region 
S (G, iI2 ao). and are therefore bounded. 

Consider the auxilliary system 

& / dt = Y +)A (z), t E 1, 2 = (21, . . .t z,,) E Rx” (2.2) 

By the condition (c) of Theorem 2 the function v (z) has a constant sign in S (C, EO), 

therefore the phase trajectories of (2.1) must coincide with the phase trajectories of the 
auxilliary system (2.2) in s (C, eo). In this case the motions of (2.2) originating at VO 
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must belong to the bounded set S (G, ‘/&,) C RX” just as the motions Q, of the basic 
system (2.1). But by the conditions (c) of Theorems 1 and 2 this cannot take place. 

Note 2. Let n = 2. In this particular case Theorem 2 resembles the well known 
Dulac criterion of the absence of limit cycles from the given open region of the phase 

plane Rx2 [G] just as Theorem 1 resembles the Bendixon criterion [S]. 

3. Let a system be given, consisting of two coupled Van der Pol oscillators. This 

system can be interpreted as e.g. a mathematical model of a twin-contour self-excited 

oscillator l7] 
dq I dt = x2, dxS! dt = 24 (3.1) 

dz, / dt = --o~2xl - 269, + (a1 - 8&z* + I7123 + u1 (t) (t > 01 

dx4 / dt = --02223 - ?&S4 + (a, - 82532)z4 + YZ51 + u2 tt) 

Here x = (zr, . . ., z4) is a vector in a real, four-dimensional normed space Rz4 with 
the norm 11 z 11 = max,, . . . . 41 X< I; u1 (t), and u2 (r) (t & U) are the input variables repre- 

sented by any continuously differentiable scalar functions of time and oi, ai, pi, yi, oi 
(i = 1, 2) are positive numbers satisfying the condition 

or + a2 < 2 (6, + %) (3.2) 

Problem. To find a bounded set G in R,4, which contains no Liapunov-stable 

motions of the system (3.1) belonging to this set, for all t )- u. 
Obviously (3.1) satisfies the conditions (b) and (c) of Theorem 1. The set G can be 

found from the condition (d) of Theorem 1. Using this condition we first find the set 

S (G, EO) and use this to construct G by choosing a suitable E" . 
From (3.1) it follows that 

div,Q (t, Z) = --&z1” - jL12x2* f (a, -I ad - 2 (*I -I- b2) (3.3) 

Let E denote a region of RX4 in which div,Q (t, z) s M (z) > 0. Then, taking (3.3) 

into account, we can write 

B = [2 (4 + 6,) - (al + a211 

where fl is a positive number (by virtue of (3.2) ). 

Let l&X, [*I be the projection of the set w in RX4 onto the coordinate plane 

%0X3 = {I = bl, . . . 1 24); 22 = 0, 24 = 0) 

The condition (d) of Theorem 1 can be guaranteed to hold by taking, as S (G, En) , any 

open bounded connected set in Rx4 such, that 

Below we show that if E,, satisfies the conditions 

o<e,<min(l/K; WE) 

then the set G sought can be chosen nonempty. 
Let us denote by I (*) the boundary of the set QM. On the coordinate plane .c10z3 we 

construct the following sets : 
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R (8,)) = {(al, ~3): max (1 J‘I- C!I 1; j ~‘3 -- 6 1) < eo; (dl,d3) E 1 (~J~s,os, [Ej)} 

k'(e.,) = R (SO) f-j Prxl,,! j El. V (c:4 = I’rrlnrs lEl’\li ie~f 

Taking the definition of the norm 11 s /I 7. niax,, . . . . $1 si 1 into account, we find from 
the previous constructions, that we can take as (I any open bounded connected set in 
R,:” such that PI‘,, ,,,, y,It:I = I: (t’tr) 

Naturally c is nonempty because Ed satisfies the conditions (3,4), Thus all conditions 
of Theorem 1 hold, Consequently, no matter how small the positive number E,, and what 

continuously differentiable functions zil (I) and ull (1) are chosen, no Liapunov-stable 
motion of (3.1) exists belonging, at all t _& u , to the set G constructed, 

The author thanks V, V, Rumiantsev for valuable advice, 
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Galkin in his papers [l, 21 obtained a class of exact solutions of the system of 
kinetic moments for a monatomic Maxwell-type gas. The simplest flows descri- 
bed by these solutions, namely the shear and divergent flows, were used to analyze 
the domain of appli~billty of the Cllapman-Enskog method [l, 3, 41, The pre- 
sent paper deals with certain other flows belonging to this class. The solutions 

obtained are used to investigate the domain of applicability of the Navier-Stokes 
and Barnett approximations to the Chapman-Enskog method. 

2. Let us consider a one-dimensional flow for which the macroscopic velocity com- 


